Math, asked by prashant748793, 10 months ago

If a + b + c = 16 and a2 + b2 + c2 = 90, then find the value of a3 + b3 + c3 – 3abc.​

Answers

Answered by ankushsaini23
18

Answer:

\huge\boxed{\fcolorbox{red}{pink}{Your's Answer}}

Given= a+b+c = 16

 {a}^{2}  +  {b}^{2}  +  {c}^{2}  = 90

To find= Value of {a}^{3}  +  {b}^{3}  +  {c}^{3}  - 3abc

SOLUTION:- As we know,

 {(a + b + c)}^{2}  =  {a}^{2}  +  {b}^{2}  +  {c}^{2}  + 2(ab + bc + ca)

 =>  {(12)}^{2}  = 90 + 2(ab + bc + ca)

 => 144 = 90 + 2(ab + bc + ca)

 => 2(ab + bc + ca) = 54

 => ab + bc + ca = 27

Now, {a}^{3}  +  {b}^{3}  +  {c}^{3}  - 3abc

 = (a + b + c){( {a}^{2}  +  {b}^{2}  +  {c}^{2} ) - (ab + bc + ca)}

 = 12 \times (90 - 27)

 = 12 \times 63

 = 756

  • hope it helps you...
  • please mark it as a brainlist answer...
  • also please rate thanks and follow me...
  • stay home STAY SAFE...
Answered by codiepienagoya
4

Given:

a+b+c=16\\a^2+b^2+c^2=90\\

To find:

a^3+b^3+c^3-3abc=?

Solution:

\to a+b+c=16....(a)\\\to  a^2+b^2+c^2=90.....(b)\\

Formula:

\bold{(a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ca}

\bold{a^3+b^3+c^3-3abc= (a+b+c)(a^2+b^2+c^2 -ab-bc-ca)}

whole square the equation (a) and put the given value:

\Rightarrow (a+b+c)^2=(a^2+b^2+c^2)+2(ab+bc+ca)\\\\\Rightarrow (16)^2=(90)+2(ab+bc+ca)\\\\\Rightarrow (256-90)=2(ab+bc+ca)\\\\\Rightarrow (ab+bc+ca)= \frac{256-90}{2}\\\\\Rightarrow (ab+bc+ca)= \frac{166}{2}\\\\\Rightarrow (ab+bc+ca)= 83 \\\\

So, The value of \bold{a^3+b^3+c^3-3abc} is:

\Rightarrow  (a+b+c)(a^2+b^2+c^2 -ab-bc-ca)\\\\\Rightarrow (a+b+c)(a^2+b^2+c^2 -(ab+bc+ca))\\\\\Rightarrow 16 \times (90- 83)\\\\\Rightarrow 16 \times 7 \\\\\boxed {\Rightarrow 112}

The final value is 112.

Similar questions