Math, asked by abhiman20, 8 months ago

If a + b + c = 16 and a2 + b2 + c2 = 90, then find the

value of a3 + b3 + c3 – 3abc.​

Answers

Answered by badrinathgpm123
5

I hope it is useful for you.plz mark it in brain list

Attachments:
Answered by mysticd
1

 Given \: a + b + c = 16 \: --(1) \\and \: a^{2} + b^{2} + c^{2} = 90 \: --(2)

/* By Algebraic Identity */

 a^{2} + b^{2} +c^{2} + 2ab+2bc+2ca =  (a+b+c)^{2}

 \implies 90 + 2(ab+bc+ca) = 16^{2}

 \implies  2(ab+bc+ca) = 256 - 90

 \implies  2(ab+bc+ca) = 166

 \implies  ab+bc+ca= \frac{166}{2}

 \implies  ab+bc+ca= 83\: --(3)

 Now , \red { Value \:of \: a^{3} + b^{3} +c^{3} -3abc } \\= (a+b+c)(a^{2}+b^{2}+c^{2} - ab-bc-ca ) \\= (a+b+c)[a^{2}+b^{2}+c^{2} - (ab+bc+ca )]\\= 16 ( 90 - 83 ) \\= 16 \times 7 \\= 112

Therefore.,

 \red { Value \:of \: a^{3} + b^{3} +c^{3} -3abc } \\\green { = 112 }

•••♪

Similar questions