if a+b+c=18 and a^2+b^2+C^2=122 find value of ab+bc+ca
Answers
Answered by
27
Question :-
To find the value of ---
ab + bc + ca
● When given with ---
⟹ a + b + c = 18
⟹ a^2+b^2+c^2= 122
Answer :-
● Using Identity,
(a + b + c) ^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca
(a + b + c) ^2 = a^2 + b^2 + c^2 + 2( ab + bc + ca)
Putting the given values,
⟹ (18)^2 = 122 + 2( ab + bc + ca)
⟹ 324 - 122 = 2 ( ab + bc + ca)
⟹ 202 / 2 = ab + bc + ca
⟹ 101 = ab + bc + ca
■ Hence, the value of ab + bc + ca is 101 .
Hope it helps !
Answered by
1
Answer:
101
Step-by-step explanation:
We know,
==>
==>
==>
==>
2(ab+bc+ca)=202
==>
Hence ;
(ab+bc+ca)=101
#SPJ2
Similar questions