Math, asked by mitali270907, 2 months ago

if a+b+c=18 and a^2+b^2+C^2=122 find value of ab+bc+ca​

Answers

Answered by mittalsapna19
27

Question :-

To find the value of ---

ab + bc + ca

When given with ---

⟹ a + b + c = 18

⟹ a^2+b^2+c^2= 122

Answer :-

Using Identity,

(a + b + c) ^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca

(a + b + c) ^2 = a^2 + b^2 + c^2 + 2( ab + bc + ca)

Putting the given values,

⟹ (18)^2 = 122 + 2( ab + bc + ca)

⟹ 324 - 122 = 2 ( ab + bc + ca)

⟹ 202 / 2 = ab + bc + ca

101 = ab + bc + ca

Hence, the value of ab + bc + ca is 101 .

Hope it helps !

Answered by kamlesh678
1

Answer:

101

Step-by-step explanation:

We know,

==>

(a+b+c)^2 = a^2+b^2+c^2+2ab+2bc+2ca

==>

(18)^2=122+2(ab+bc+ca)

==>

324-122=2(ab+bc+ca)

==>

2(ab+bc+ca)=202

==>

Hence ;

(ab+bc+ca)=101

#SPJ2

Similar questions