If a + b + c = 18 and a2 + b2 + c2 = 122, then find the value of ab + bc + ca
Answers
Answered by
74
a + b + c = 18
a² + b² + c² = 122
(a + b + c)² = a² + b² + c² + 2(ab + bc + ca)
(18)² = 122 + 2(ab + bc + ca)
324 = 122 + 2(ab + bc + ca)
2(ab + bc + ca) = 324 - 122
2(ab + bc + ca) = 202
ab + bc + ca = 202 ÷ 2
ab + bc + ca = 101
Answered by
1
Answer:
The required value of ab + bc + ca is 101
Step-by-step explanation:
It is given that,
a + b + c = 18
and,
We know that,
or, (18)² = 122 + 2 ( ab + bc + ca ) [ ∵ a + b + c = 18 & a² + b² + c² = 122 )
or, 324 = 122 + 2 ( ab + bc + ca )
or, 2 ( ab + bc + ca ) = 324 - 122
or, 2 ( ab + bc + ca ) = 202
or, ab + bc + ca =
or, ab + bc + ca = 101
Similar questions
World Languages,
1 month ago
Math,
1 month ago
Math,
2 months ago
Chemistry,
10 months ago
Math,
10 months ago