If A + B + C = 180
and cos A = cob B cos C
Then prove,
i)tan A=tan B + tan C
ii)2cotBcotC=1
Answers
Step-by-step explanation:
SOLUTION :
A + B + C = 180° (given)
=> B + C = 180° - A
=> sin(B + C) = sin(180° - A)
=> sinB . cosC + cosB . sinC = sinA
sinB . cosC + cosB . sinC sinA
=> --------------------------------------- -- -----------
cosA cosA
sinB . cosC cosB . sinC sinA
=> ------------------- + ------------------ -- -----------
cosA cosA cosA
sinB . cosC cosB . sinC sinA
=> ------------------- + ------------------ -- -----------
cosB . cosC cosB . cosC cosA
sinB . cosC cosB . sinC sinA
=> ------------------- + ------------------- -- -----------
cosB . cosC cosB . cosC cosA
sinB sinC sinA
=> ---------- + ---------- -- -----------
cosB cosC cosA
=> tanB + tanC = tanA
=> tanA = tanB + tanC
(Proved)