Math, asked by pbibek592, 4 months ago

if A+B+C =180 AND COSA=COSB.COSC THEN PROVE TANB.TANC=2​

Answers

Answered by SuitableBoy
157

Answer:

 \\

Given :

 \\

  • A+B+C = 180°
  • cos A = cos B . cos C

 \\

To Prove :

 \\

  • tan B . tan C = 2

 \\

Proof :

  \\

We know :

 \colon \rightarrow \sf \: A + B + C =  \bf180 {}^{ \circ}

So,

 \colon \rightarrow \sf \: A + (B + C) =  \bf180 {}^{ \circ}  \\  \\

 \colon \rightarrow \sf \: A = \bf 180 {}^{ \circ} \sf  - (B + C) \\  \\

  • Put 180° = π

 \\ \colon \rightarrow \sf \: A =  \pi - (B+ C) \\  \\

Now,

We also know :

 \colon \implies \sf \: cos \: A = cos \: B \times cos \: C \\  \\

  • Put A = π - (B+C)

 \\  \colon \implies \sf \: cos \{\pi - (B + C) \} = cos \: B \times cos \: C \\  \\

» Since, π is an even multiple of \dfrac{\pi}{2} so, cos would remain cos.

» cos ( π - \theta ) = - cos \theta

 \\  \colon \implies \sf \:  - cos(B + C) = cos \: B \times cos \: C \\  \\

» Using cos (x+y) = cos x cos y - sin x siny

 \\  \colon \implies \sf \:  -  \{cos \: B \times cos \: C - sin \: B \times sin \: C \} = cos \: B \times cos \: C \\  \\

 \colon \implies \sf \:  - cos \: B \times cos \: C + sin \: A \times sin \: B =   cos \: C \times cos \: C \\  \\

 \colon \implies \sf \: sin \: B \times sin \: C = cos \: B \times cos \: C + cos \: B \times cos \: C \\  \\

 \colon \implies \sf \: sin \: B \times sin \: C = 2 \: cos \: B \times  \: cos \: C \\  \\

 \displaystyle \colon \implies \:  \sf \dfrac{sin \: B \times sin \: C}{cos \: B \times cos \: C}  = 2 \\  \\

» Using \bf\dfrac{sin\:\theta}{cos\:\theta}=tan\:\theta.

 \\  \colon \implies \sf \: tan \: B \times tan \: C = 2 \\  \\

 \colon \dashrightarrow \boxed{ \pink{ \bf{tan \: B \: tan \: C = 2}}}

Hence Proved !!

 \\

_____________________________

Answered by Anonymous
35

\begin{gathered}\begin{gathered}\sf Given -  \begin{cases} &\sf A+B+C=180°\\ & \sf \: cos \: A = cos \: B \times cos \: C \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\sf To \:  Prove  -   \begin{cases} &\sf \: tan \: B \times tan \: C = 2  \end{cases}\end{gathered}\end{gathered}

⠀⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀⠀⠀⠀

\sf Formula \:Used :-

  • \sf cos (x+y) = cos x \:cos y - sin x\: sin y \\\\
  • \sf\dfrac{sin\:\theta}{cos\:\theta}=tan\:\theta.

⠀⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀

\sf Proof  :-

We are given that:-

 :\implies \bf \: A + B + C =  \bfπ \\\\

 :\implies \sf \: A + (B + C) =  \sf π   \\  \\

:\implies  \sf \: A = \bf π\bf  - (B + C) \\  \\

Again :-

: \implies \sf \: cos \: A = cos \: B \times cos \: C \\  \\

\underline{\bf{\dag} \:\mathfrak{Putting\:value\:of\:A\: :}}⠀⠀⠀

: \implies \sf \: cos \{\pi - (B + C) \} = cos \: B \times cos \: C \\  \\

 : \implies \sf \:  - cos(B + C) = cos \: B \times cos \: C \\  \\

 :\implies \sf \:  -  \{cos \: B \times cos \: C - sin \: B \times sin \: C \} = cos \: B \times cos \: C \\  \\

: \implies \sf \: sin \: B \times sin \: C = cos \: B \times cos \: C + cos \: B \times cos \: C \\  \\

 : \implies \sf \: sin \: B \times sin \: C = 2 \: cos \: B \times  \: cos \: C \\  \\

 \displaystyle : \implies \:  \sf \dfrac{sin \: B }{cos \: B} \times \dfrac { sin \: C}{ cos \: C}  = 2 \\  \\

 :\implies \bf \: tan \: B \times tan \: C = 2 \\  \\

❍ Hence, (Proved)

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀⠀⠀

Similar questions