If A+B+C=180 degree then prove that tanB.tanC + tanC.tanA + tanA.tanB = 1 + secA.secB.secC
Answers
Answered by
21
LHS =
= [ sinA SInB CosC + SinA SinC CosB + SinB SinC CosA ] / cosA CosB CosC
= [ Sin A * (Sin B Cos C + CosB SinC) + Sin B Sin C CosA] sec A sec B sec C
= [ sin A Sin (B+C) + SIn B SIn C Cos A ] sec A sec B sec C
= [ sin² A + Sin B SIn C Cos A ] sec A sec B sec C
= [ 1 - Cos² A + sin B Sin C Cos A ] sec A sec B sec C
= sec A Sec B sec C + (Sin B Sin C - Cos A) sec B Sec C
= sec A sec B sec C + [Sin B Sin C + Cos (B+C) ]sec B sec C
= sec A sec B sec C + [ Cos B Cos C ] * sec B Sec C
= sec A sec B sec C + 1
= [ sinA SInB CosC + SinA SinC CosB + SinB SinC CosA ] / cosA CosB CosC
= [ Sin A * (Sin B Cos C + CosB SinC) + Sin B Sin C CosA] sec A sec B sec C
= [ sin A Sin (B+C) + SIn B SIn C Cos A ] sec A sec B sec C
= [ sin² A + Sin B SIn C Cos A ] sec A sec B sec C
= [ 1 - Cos² A + sin B Sin C Cos A ] sec A sec B sec C
= sec A Sec B sec C + (Sin B Sin C - Cos A) sec B Sec C
= sec A sec B sec C + [Sin B Sin C + Cos (B+C) ]sec B sec C
= sec A sec B sec C + [ Cos B Cos C ] * sec B Sec C
= sec A sec B sec C + 1
Similar questions