Math, asked by krishan4394, 4 months ago

if A+B+C=180,prove that sin2A +sin2 +sinC =4SIN A sinB sinC​

Answers

Answered by Anonymous
29

Answer:

answer

a + b + c = 180

lhs \:   =  \: sin2a \:  +  \: sin2b \:  + sin2c

 = 2sin \: (a + b) \: cos \:( a - b) +2sin \: c \: cos \: c

 = 2sin \: c \: cos \: (a - b) + 2sin \: c \: cos \: c

 = 2sin \: c( \: cos \: (a - b) + cos \: c)

 = 2 \: sin \: c( \: cos(a \:  -  \: b) -  \: cos(a + b)

 = 2sin \: c2sin \: a \: sin \: b

 = 4 \: sin \: a \: sin \: b \: sin \: c

 = rhs


ravindraprasadsingh0: I have thank your answers you thanks mine
Answered by mukherjeearjun2003
0

Answer:

answer

a + b + c = 180a+b+c=180

lhs \: = \: sin2a \: + \: sin2b \: + sin2clhs=sin2a+sin2b+sin2c

= 2sin \: (a + b) \: cos \:( a - b) +2sin \: c \: cos \: c=2sin(a+b)cos(a−b)+2sinccosc

= 2sin \: c \: cos \: (a - b) + 2sin \: c \: cos \: c=2sinccos(a−b)+2sinccosc

= 2sin \: c( \: cos \: (a - b) + cos \: c)=2sinc(cos(a−b)+cosc)

= 2 \: sin \: c( \: cos(a \: - \: b) - \: cos(a + b)=2sinc(cos(a−b)−cos(a+b)

= 2sin \: c2sin \: a \: sin \: b=2sinc2sinasinb

= 4 \: sin \: a \: sin \: b \: sin \: c=4sinasinbsinc

= rhs=rhs

Similar questions