if A+B+C=180,prove that sin2A +sin2 +sinC =4SIN A sinB sinC
Answers
Answered by
29
Answer:
ravindraprasadsingh0:
I have thank your answers you thanks mine
Answered by
0
Answer:
answer
a + b + c = 180a+b+c=180
lhs \: = \: sin2a \: + \: sin2b \: + sin2clhs=sin2a+sin2b+sin2c
= 2sin \: (a + b) \: cos \:( a - b) +2sin \: c \: cos \: c=2sin(a+b)cos(a−b)+2sinccosc
= 2sin \: c \: cos \: (a - b) + 2sin \: c \: cos \: c=2sinccos(a−b)+2sinccosc
= 2sin \: c( \: cos \: (a - b) + cos \: c)=2sinc(cos(a−b)+cosc)
= 2 \: sin \: c( \: cos(a \: - \: b) - \: cos(a + b)=2sinc(cos(a−b)−cos(a+b)
= 2sin \: c2sin \: a \: sin \: b=2sinc2sinasinb
= 4 \: sin \: a \: sin \: b \: sin \: c=4sinasinbsinc
= rhs=rhs
Similar questions
Math,
2 months ago
Science,
2 months ago
Social Sciences,
2 months ago
Computer Science,
4 months ago
Science,
10 months ago
Math,
10 months ago
Biology,
10 months ago