Math, asked by aman1290, 1 year ago

If A+B+C=180, sinA-sinB+sinC=

Answers

Answered by MaheswariS
4

\textbf{Given:}

\displaystyle\,A+B+C=180^{\circ}

\displaystyle\,sin\,A-sin\,B+sin\,C

\text{Using}

\boxed{\bf\sin\,C-sin\,D=2\,cos(\frac{C+D}{2})\,sin(\frac{C-D}{2})}

=\displaystyle\,2\,cos(\frac{A+B}{2})\,sin(\frac{A-B}{2})+sin\,C

=\displaystyle2\,cos(\frac{180^{\circ}-C}{2})\,sin(\frac{A-B}{2})+sin\,C

\text{using}

\boxed{\bf\sin\,A=2\,sin(\frac{A}{2})\,cos(\frac{A}{2})}

=\displaystyle\,2\,cos(90^{\circ}-(\frac{C}{2}))\,sin(\frac{A-B}{2})+2\,sin\,(\frac{C}{2})\,cos(\frac{c}{2})

=\displaystyle\,2\,sin(\frac{C}{2})\,sin\,(\frac{A-B}{2})+2\,sin(\frac{C}{2})\,cos(\frac{C}{2})

=\displaystyle\,2\,sin(\frac{C}{2})\,(sin(\frac{A-B}{2})+cos(\frac{C}{2}))

=\displaystyle\,2\,sin(\frac{C}{2})[sin(\frac{A-B}{2})+cos(\frac{180^{\circ}-(A+B)}{2})]

=\displaystyle\,2\,sin(\frac{C}{2})\,[sin(\frac{A-B}{2})+cos\,(90^{\circ}-(\frac{A+B}{2}))]

\boxed{\bf\,sin(A+B)+sin(A-B)=2\,sin\,A\,cos\,B}

=\displaystyle\,2\,sin(\frac{C}{2})\,[sin(\frac{A-B}{2})+sin(\frac{A+B}{2})]

=\displaystyle\,2\,sin(\frac{C}{2})[2\,sin(\frac{A}{2})\,cos(\frac{B}{2})]

=\displaystyle\,4\,sin(\frac{A}{2})\,cos(\frac{B}{2})\,sin(\frac{C}{2})

\implies\boxed{\bf\,sin\,A-sin\,B+sin\,C=4\,sin(\frac{A}{2})\,cos(\frac{B}{2})\,sin(\frac{C}{2})}

Similar questions