Math, asked by dawadikripa, 9 months ago

If a+b+c=180 then prove:cosa-cosb+cosc=4cosa/2*sinb/2

Answers

Answered by shadowsabers03
3

Correct Question:-

If a+b+c=180^o, prove that \cos a-\cos b+\cos c=4\cos\left(\dfrac{a}{2}\right)\sin\left(\dfrac{b}{2}\right)\cos\left(\dfrac{c}{2}\right)-1.

Solution:-

We have,

  • \cos A+\cos B=2\cos\left(\dfrac{A+B}{2}\right)\cos\left(\dfrac{A-B}{2}\right)\quad\quad\dots(1)
  • \cos(2A)=1-2\sin^2A\quad\quad\dots(2)
  • \cos(90^o-A)=\sin A\quad\quad\dots(3)
  • \sin(90^o-A)=\cos A\quad\quad\dots(4)

Then,

\longrightarrow\cos a-\cos b+\cos c=\cos a+\cos c-\cos b

Using (1),

\longrightarrow\cos a-\cos b+\cos c=2\cos \left(\dfrac{a+c}{2}\right)\cos \left(\dfrac{a-c}{2}\right)-\cos b

Using (2),

\longrightarrow\cos a-\cos b+\cos c=2\cos \left(\dfrac{a+c}{2}\right)\cos \left(\dfrac{a-c}{2}\right)-\left[1-2\sin^2\left(\dfrac{b}{2}\right)\right]

\longrightarrow\cos a-\cos b+\cos c=2\cos \left(\dfrac{a+c}{2}\right)\cos \left(\dfrac{a-c}{2}\right)-1+2\sin^2\left(\dfrac{b}{2}\right)

But given that,

\longrightarrow a+b+c=180^o

\longrightarrow a+c=180^o-b

\longrightarrow b=180^o-(a+c)

Thus,

\longrightarrow\cos a-\cos b+\cos c=2\cos \left(\dfrac{180^o-b}{2}\right)\cos \left(\dfrac{a-c}{2}\right)-1+2\sin^2\left(\dfrac{b}{2}\right)

\longrightarrow\cos a-\cos b+\cos c=2\cos \left(90^o-\dfrac{b}{2}\right)\cos \left(\dfrac{a-c}{2}\right)-1+2\sin^2\left(\dfrac{b}{2}\right)

Using (3),

\longrightarrow\cos a-\cos b+\cos c=2\sin\left(\dfrac{b}{2}\right)\cos \left(\dfrac{a-c}{2}\right)-1+2\sin^2\left(\dfrac{b}{2}\right)

\longrightarrow\cos a-\cos b+\cos c=2\sin\left(\dfrac{b}{2}\right)\cos \left(\dfrac{a-c}{2}\right)+2\sin^2\left(\dfrac{b}{2}\right)-1

\longrightarrow\cos a-\cos b+\cos c=2\sin\left(\dfrac{b}{2}\right)\left[\cos \left(\dfrac{a-c}{2}\right)+\sin\left(\dfrac{b}{2}\right)\right]-1

\longrightarrow\cos a-\cos b+\cos c=2\sin\left(\dfrac{b}{2}\right)\left[\cos \left(\dfrac{a-c}{2}\right)+\sin\left(\dfrac{180^o-(a+c)}{2}\right)\right]-1

\longrightarrow\cos a-\cos b+\cos c=2\sin\left(\dfrac{b}{2}\right)\left[\cos \left(\dfrac{a-c}{2}\right)+\sin\left(90^o-\dfrac{a+c}{2}\right)\right]-1

Using (4),

\longrightarrow\cos a-\cos b+\cos c=2\sin\left(\dfrac{b}{2}\right)\left[\cos \left(\dfrac{a-c}{2}\right)+\cos\left(\dfrac{a+c}{2}\right)\right]-1

\longrightarrow\cos a-\cos b+\cos c=2\sin\left(\dfrac{b}{2}\right)\left[\cos\left(\dfrac{a+c}{2}\right)+\cos \left(\dfrac{a-c}{2}\right)\right]-1

Using (1),

\longrightarrow\cos a-\cos b+\cos c=2\sin\left(\dfrac{b}{2}\right)\cdot2\cos\left(\dfrac{\frac{a+c}{2}+\frac{a-c}{2}}{2}\right)\cos \left(\dfrac{\frac{a+c}{2}-\frac{a-c}{2}}{2}\right)-1

\longrightarrow\cos a-\cos b+\cos c=2\sin\left(\dfrac{b}{2}\right)\cdot2\cos\left(\dfrac{a}{2}\right)\cos \left(\dfrac{c}{2}\right)-1

\longrightarrow\underline{\underline{\cos a-\cos b+\cos c=4\cos\left(\dfrac{a}{2}\right)\sin\left(\dfrac{b}{2}\right)\cos \left(\dfrac{c}{2}\right)-1}}

Hence Proved!

Answered by Anonymous
0

Answer:

plz Mark it as brainliest answer plzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz zzzzzzzzzzzzzzzzzzzz

Similar questions