if A+B+C=180 then prove that
tanA+tanB+tanC=tanA×tanB×tanC
Answers
To prove--->
If A + B + C = 180°
then
tanA + tanB + tanC = tanA tanB tanC
Proof ---> A + B + C = 180° ( given )
A + B = 180° - C
Taking tan both sides
tan ( A + B ) = tan ( 180° - C )
We have some formulee
tan x + tan y
tan ( x + y ) = ------------------------
1 - tan x tan y
and tan (180° - θ ) = - tan θ
Applying these formulee here
tan A + tan B
---------------------- = - tanC
1 - tanA tan B
=> tan A + tan B = -tanC( 1- tanA tanB )
=> tanA + tanB = -tanC + tanA tanB tanC
=> tanA + tanB + tanC = tanA tanB tanC
Hence proved
Additional information--->
1)tan(A - B) = tanA - tanB / 1+ tanA tanB
2)Sin(A + B ) = SinA CosB + CosA SinB
3)Sin(A - B ) = SinA CosB - CosA SinB
4)Cos(A +B )= CosA CosB - SinA SinB
5)Cos(A - B )= CosA CosB + SinA SinB