If A+B+C=180° and CosA=CosB×CosC,prove that:TanB×TanC=2
Answers
Answered by
0
Explanation:
R.H.S.
= tanB+tanC
= (sinB/cosB)+(sinC/cosC)
= (sinBcosC+cosBsinC)/(cosB.cosC)
= sin(B+C)/cosA [cosA=cosB.cosC]
= sinA/cosA [A+B+C=pie, B+C=pie-A, sin(B+C)=sin(pie-A)= sinA]
= tanA = L.H.S. Proved.
Similar questions