If A + B + C = 1800, prove that
sin (B + C – A) + sin (C + A – B) + sin (A + B – C) = 4 sin A sin B sin C.
No spams
Answers
Answered by
1
Answer:
We have
A+ B+ C = 180°
sin (B + C – A) + sin (C + A – B) + sin (A + B – C) = 4 sin A sin B sin C
So consider LHS = sin (B + C – A) + sin (C + A – B) + sin (A + B – C)
= sin (π– A – A) + sin (π – B – B) + sin (π– C – C)(since A + B + C = π)
= sin 2A + sin 2B + sin 2C
= 4 sin A sin B sin C
HOPE IT HELPS
Answered by
0
Answer:
sin 2a 3b and 4ç
Step-by-step explanation:
15/√2 × 10–5
Similar questions