If A + B + C = 180°, then prove that
sin 2A-sin 2B+sin 2C=4 cos A sin B cos C
Answers
Answered by
3
Step-by-step explanation:
- Given A + B + C = 180°
- 2A + 2B + 2C = 360°
- 2A + 2B = 360° – 2C
- sin(2A + 2B) = sin(360° – 20) = – sin2C
- cos(2A + 2B) = cos(360° – 2C) = cos 2C
- L.H.S = sin2A – sin2B + sin2C
- = 2cos(A + B) · sin(A – B) + 2sinC. cosC
- = – 2cosC.sin(A – B) + 2 sinc.cosC
- = 2 cosC [sinC – sin (A – B)]
- = 2 cosC [sin(A + B) – sin(A – B)]
- = 2 cos C [2cosA . sinB] =
- 4 cosA sinB.cosC = R.H.S
Hope this answer help you ❣️
Similar questions