Math, asked by raheemabegum7786, 4 months ago

If A + B + C = 180°, then prove that
sin 2A-sin 2B+sin 2C=4 cos A sin B cos C​

Answers

Answered by ayeshasayyed144
3

Step-by-step explanation:

  1. Given A + B + C = 180°
  2. 2A + 2B + 2C = 360°
  3. 2A + 2B = 360° – 2C
  4. sin(2A + 2B) = sin(360° – 20) = – sin2C
  5. cos(2A + 2B) = cos(360° – 2C) = cos 2C
  6. L.H.S = sin2A – sin2B + sin2C
  7. = 2cos(A + B) · sin(A – B) + 2sinC. cosC
  8. = – 2cosC.sin(A – B) + 2 sinc.cosC
  9. = 2 cosC [sinC – sin (A – B)]
  10. = 2 cosC [sin(A + B) – sin(A – B)]
  11. = 2 cos C [2cosA . sinB] =
  12. 4 cosA sinB.cosC = R.H.S

Hope this answer help you ❣️

Similar questions