If A + B + C =180° then prove the given conditional trigonometric identity
Answers
Answer:
If A + B + C = π, then the sum of any two angles is supplementary to the third i.e.,
(i) B + C = π - A or, C + A = π - B or A + B = π - C.
(ii) If A + B + C = π then sin (A + B) = sin (π - C) = sin C
sin (B + C) = sin (π - A) = sin A
sin (C + A) = sin (π - B) = sin B
(iii) If A + B + C = π then cos (A + B) = cos (π - C) = - cos C
cos (B + C) = cos (π - A) = - cos A
cos (C + A) = cos (π - B) = - cos B
(iv) If A + B + C = π then tan (A + B) = tan (π - C) = - tan C
tan (B + C) = tan (π - A) = - tan A
tan (C + A) = tan (π - B) = - tan B
(v) If A + B + C = π then A2 + B2 + C2 = π2
Hence, it is evident that the sum of any two of the three angles C2, B2, C2 is complementary to the third.
i.e., A+B2 = π2 - C2,
B+C2 = π2 - A2
C+A2 = π2 - B2
Therefore,
sin (A2 + B2) = sin π2 - C2 = cos C2
sin (B2 + C2) = sin π2 - A2 = cos A2
sin (C2 + A2) = sin π2 - B2 = cos B2
cos (A2 + B2) = cos π2 - C2 = sin C2
sin (B2 + C2) = cos π2 - A2 = sin A2
sin (C2 + A2) = cos π2 - B2 = sin B2
tan (A2 + B2) = tan π2 - C2 = cot C2
tan (B2 + C2) = tan π2 - A2 = cot A2
tan (C2 + A2) = tan π2 - B2 = cot