If (a+b+c)²= 3(ab+bc+ca) then prove that. a²\bc+ b²/ca+c²/ab=3
Answers
Answered by
1
Step-by-step explanation:
a^3+b^3+c^3 -3abc = (a^2+b^2+c^2-ab-bc-ca)(abc) ----(1)
according to question :-
(a+b+c)^2 = 3(ab+bc+ca)
a^2 + b^2+ c^2 + 2(ab + bc + ca) = 3(ab + bc + ca)
a^2 + b^2 + c^2 = 3(ab + bc + ca) - 2(ab + bc + ca)
a^2 + b^2 + c^2 = ab + bc + ca--- (2)
substitute (2) in (1)
a^3+b^3+c^3 - 3abc = (ab+bc+ca-ab-bc-ca)(abc)
a^3+b^3+c^3 = 3abc
divide both sides with abc
(a^3+b^3+c^3)/abc = 3abc / abc
a^3/abc + b^3/abc + c^3/abc = 3
a^2/bc + b^2/ac + c^2/ab = 3
hope this helps please mark as brainliest
Similar questions