If A+B+C= π/2 then show that
tanA tanB + tanB tanC + tanC tanA=1
Answers
3 tanФ = Cot Ф = 1/tanФ
3 tan²Ф = 1
TanФ = + 1/√3
Ф = n π + π/6
Ф = π/6 or π+π/6 = 7π/6 or π-π/6 = 5π/6 or 2π-π/6 = 11π/6
There are 4 solutions for 0° < Ф < 360°.
===============
A + B + C = π/2
=> Tan(A+B) = Tan(π/2-C) = Cot C = 1/TanC
=> Tan (B+C) = 1/TanA
=> Tan(C+A) = 1/TanB
Tan (A+B) = [TanA + TanB]/[1 - TanA TanB]
Rearrange: TanA TanB = 1 - (TanA+TanB)/Tan(A+B)
= 1 - (TanA+TAnB) ×TanC ---(1)
Similarly: Tan B TanC = 1 - (TanB + TanC) × TanA ---(2)
Tan C TanA = 1 - (TanC + TanA) ×TanB --- (3)
Add (1) , (2) & (3):
LHS = TanA TanB + TanB TanC + TanC Tan A
= 3 - 2 (TanA TanB + TanB TanC + Tanc TanA)
= 3 - 2 LHS
So TanA TanB + TanB TanC + Tan C TanA = 1