Math, asked by sriramsanvika2, 16 days ago

If a+b+c=22 and ab+bc+ca =54 then a square + b square + c square =​

Answers

Answered by mettahendre
1

Answer:

376

Step-by-step explanation:

a² + b² + c² = (a + b + c)² - 2(ab + bc + ca)

= 22² - 2(54)

= 484 - 108

= 376

Answered by Unni007
4

Given,

  • a + b + c = 22
  • ab + bc + ca = 54

We know,

\sf{(a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ca}

\sf{\implies (a+b+c)^2=a^2+b^2+c^2+2(ab+bc+ca)}

\sf{\implies a^2+b^2+c^2=(a+b+c)^2-2(ab+bc+ca)}

Applying the values to the equation:

\sf{\implies a^2+b^2+c^2= (22)^2-(2\times54)}

\sf{\implies a^2+b^2+c^2=484-108}

\sf{\implies a^2+b^2+c^2=376}

\boxed{\sf{\therefore a^2+b^2+c^2=376}}

Similar questions