If A+B+C=270 THEN sin2A+sin2B-sin2C=-4sinAsinBsinC
Answers
Answered by
13
sin2A + sin 2B +sin2C = 2 sin(A+B)cos(A-B) + 2sinC cosC =2sinC cos(A-B)+2sinC cosC =2sinC (cos(A-b) + cos C) =2sin C(cos(A-B) - cos(A+B) ) = 2sinC . 2sin A sin B =4 sinA sin B sin C
Answered by
0
Given : A+B+C=270
So ,
sin2A+sin2B-sin2C
= 2 cos (A + C) sin (A – C) + 2 sinB cosB
= 2 cos (270 – B) sin (A – C) + 2 sinB cosB
= 2 sin B ( – sin (A – C) + cos (270 – ( A+C))
= 2 sin B ( – sin ( A – C) – sin (A + C))
= – 4 sinA sinB sinC
Used formulas :
sin2x = 2sin(x)cos(x)
#SPJ3
Similar questions