If a + b + c = 29 and a square + b square + c square = 791, find ab+ bc + ca
Answers
Answered by
1
Answer:
(a+b+c) ^2=a^2+b^2+c^2+2(ab+bc+ca)
(29) ^2=791+2(ab+bc+ca)
841=791+2(ab+bc+ca)
841-791=2(ab+bc+ca)
50=2(ab+bc+ca)
50/2=ab+bc+ca
25=ab+bc+ca
Answered by
1
Step-by-step explanation:
given - a+b+c = 29
a^2+b^2+c^2 = 791
to find - ab+bc+ca
solution - (a+b+c)^2 = a^2+b^2+c^2+2ab+2bc+2ac
(29)^2 =791 + 2(ab+bc+ac)
841 =791 +2(ab+bc+ac)
841-791 = 2(ab+bc+ac)
50 = 2(ab+bc+ac)
25= ab+bc+ac
thus , ab+bc+ac = 25
Similar questions