If a+b+c=2s then prove that (s-a)(s-b)+s(s-c)=ab
Answers
Answered by
1
Step-by-step explanation:
Now sin(s - A) sin(s − B) = 1/ -
{cos[(s - A)
(s – B)] - cos[(s − A) + (s − B)]} - - - = cos(8-A-8+ B)- cos[2s- (A+B)] {cos(A - B)- cos C'}
=
[..cos(A - B) = cos(B − A)] -
Again
sin s sins - C = [cos C - cos(A+B)]
So,
LHS={cos(AB) - cosC+cosC cos(A+B)} -
=[cos(A - B) cos(A + B)] = = [2 sin A sin B] = sin Asin B = RHS
Answered by
0
Answer:
(s-a)(s-b)+s(s-c)=ab
s²-sb-sa+ab+s²-sc=ab
2s²=ab-ab+sb+sa+sc
2s×s=s(a+b+c)
2s×s÷s=a+b+c
2s=a+b+c
Similar questions
Science,
9 days ago
Computer Science,
18 days ago
Math,
18 days ago
India Languages,
9 months ago
English,
9 months ago