if a+b+c = 3*(3^1/2) and a^2 + b^2 + c^2 = 27, prove that ab+bc+ca = 0
Answers
Solution :
Given -
a + b + c = 3 × 3^½
& a² + b² + c² = 27
To prove :
ab+bc+ca = 0
Proof -
a + b + c = 3 × 3^½
Squaring this on both sides ;
=> [ a + b + c ]² = [ 3 × 3^½ ]²
=> [ a + b + c ]² = [ 3]² × [ 3^½ ]²
=> [ a + b + c ]² = 9 × 3
=> [ a + b + c ]² = 27
=> a² + b² + c² + 2 ( ab + bc + ca ) = 27
But we know that a² + b² + c² = 27
=> 27 + 2( ab + bc + ca ) = 27
=> 2( ab + bc + ca ) = 27 - 27 = 0
=> ab + bc + ca = 0 .
Hence Proved
_______________________________
Additional Information :
(a + b)² = a² + 2ab + b²
(a + b)² = (a - b)² + 4ab
(a - b)² = a² - 2ab + b²
(a - b)² = (a + b)² - 4ab
a² + b² = (a + b)² - 2ab
a² + b² = (a - b)² + 2ab
2 (a² + b²) = (a + b)² + (a - b)²
4ab = (a + b)² - (a - b)²
ab = {(a + b)/2}² - {(a-b)/2}²
(a + b + c)² = a² + b² + c² + 2(ab + bc + ca)
(a + b)³ = a³ + 3a²b + 3ab² b³
(a + b)³ = a³ + b³ + 3ab(a + b)
(a - b)³ = a³ - 3a²b + 3ab² - b³
a³ + b³ = (a + b)( a² - ab + b² )
a³ + b³ = (a + b)³ - 3ab( a + b)
a³ - b³ = (a - b)( a² + ab + b²)
a³ - b³ = (a - b)³ + 3ab ( a - b )
_______________________________
Given
- A + B + C = 3 × 3^½
- A² + B² + C² = 27
We Find
Prove :- AB + BC + CA = 0
According to the question
By Squaring Both Sides,
Hence, We prove that AB + BC + CA = 0.