Math, asked by sulekhasah1982, 11 months ago

If a+b+c=3 ,a^2+b^2+c^2=13 and a^3+b^3+c^3=27 ,then value of 1/a+1/b+1/c is

Answers

Answered by shadowsabers03
3

Given:-

  • \sf{a+b+c=3\quad\quad\dots(1)}

  • \sf{a^2+b^2+c^2=13\quad\quad\dots(2)}

  • \sf{a^3+b^3+c^3=27\quad\quad\dots(3)}

Consider the equation \sf{(1).}

\displaystyle\longrightarrow\sf{a+b+c=3}

Square both sides,

\displaystyle\longrightarrow\sf{(a+b+c)^2=3^2}

\displaystyle\longrightarrow\sf{a^2+b^2+c^2+2(ab+bc+ca)=9}

From \sf{(2),}

\displaystyle\longrightarrow\sf{13+2(ab+bc+ca)=9}

\displaystyle\longrightarrow\sf{ab+bc+ca=-2\quad\quad\dots(4)}

We know the formula given below.

\displaystyle\longrightarrow\sf{(a+b+c)(a^2+b^2+c^2-(ab+bc+ca))=a^3+b^3+c^3-3abc}

From \sf{(1),\ (2),\ (3)} and \sf{(4),}

\displaystyle\longrightarrow\sf{3(13-(-2))=27-3abc}

\displaystyle\longrightarrow\sf{45=27-3abc}

\displaystyle\Longrightarrow\sf{abc=-6\quad\quad\dots(5)}

Now we have,

\displaystyle\longrightarrow\sf{\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{ab+bc+ca}{abc}}

From \sf{(4)} and \sf{(5),}

\displaystyle\longrightarrow\sf{\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{-2}{-6}}

\displaystyle\longrightarrow\underline{\underline{\sf{\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}}=\bf{\dfrac{1}{3}}}}

Hence \bf{\dfrac{1}{3}} is the answer.

Similar questions