If a+b+c= 3, a²+b²+c²=5,a³+b³+c³=9 find the value of abc
Answers
Answered by
4
Answer:
abc = 2
Step-by-step explanation:
(a + b + c) = 3
(a + b + c)² = 3²
a² + b² + c² +2(ab + bc + ca) = 9
5 + 2(ab + bc + ca) = 9
2(ab + bc + ca) = 9 - 5
2(ab + bc + ca) = 4
(ab + bc + ca) = 4/2
(ab + bc + ca) = 2
(a + b + c) = 3
(a² + b² + c²) = 5
(ab + bc + ca) = 2
(a³ + b³ + c³) = 9
Subtract 3abc from both sides.
a³ + b³ + c³ - 3abc = 9 - 3abc
(a + b + c)[a² + b² + c² - (ab + bc + ca)] = 9 - 3abc
(3)(5 - 4) = 9 - 3abc
3 × 1 = 9 - 3abc
3 = 9 - 3abc
3abc = 9 - 3
3abc = 6
abc = 6/3
abc = 2
Hope this helps
Please mark as brainliest
Similar questions