If a+b+c=3 and a^2+b^2+c^2=13 and a^3+b^3+c^3=27 then find the value of abc.
Answers
Answered by
0
Answer:
(a+b+c)2= a2+b2+c2+2 (ab+bc+ca)
Or,9=13+2 (ab+bc+ca)
Or,(ab+ba+ca)=-2
Next,
a3+b3+c3-3abc=(a2+b2+c2-ab-bc-ca)(a+b+c)
27-3abc=(13+2)*9
27-3abc=135
3abc=27-135
abc=-36
Similar questions