Math, asked by arihantjainjaip2550u, 11 months ago

if a+b+c =3,
 {a}^{2}  +  {b +  {c}^{2} } = 6 \\
and 1/a+1/b+1/c =1 where a,b,c are non zero then abc is

plz give the answer fastly​

Answers

Answered by mysticd
0

 Given \: a+b+c = 3 \: ---(1)

 a^{2} + b^{2} + c^{2} = 6 \: ---(2)

 2ab+2bc+2ca = (a+b+c)^{2} - (a^{2}+b^{2}+c^{2})

 \implies 2(ab+bc+ca) = 3^{2} - 6

 \implies ab+bc+ca = \frac{9-6}{2} \\= \frac{3}{2}\: --(3)

 Now , \frac{1}{a} + \frac{1}{b}+ \frac{1}{c}  = 1 \:(given )

 \implies \frac{bc+ac+ab}{abc} = 1

 \implies bc+ac+ab = abc

 \implies \frac{3}{2} = abc\: [From \:(3) ]

Therefore.,

 \red { Value \:of \:abc} \green {=\frac{3}{2}}

•••♪

Similar questions