If A+B+C=4, AB+BC+CA=6 find the value of A^3+B^C^3-3ABC
Answers
Answered by
10
A+ B +C = 4
AB + BC+CA = 6
A^3 + B^3 +C^3 - 3ABC
as we know that
A^3 + B^3 + C^3 -3ABC = ( A+ B+ C){A^2 + B^2 + C^2 - ( AB + BC + CA)} -------(i)
let's find the value of A^2 + B^2 + C^2 first , using the identity (a + b+ c)^2
(A+B + C)^2 = {A^2 + B^2 + C^2 + 2 ( AB + BC + CA)}
substitute the given values,
(4)^2 = A^2 + B^2 + C^2 + 2 (6)
16 -12 = A^2 + B^2 + C^2
A^2 + B^2 + C^2 = 4
now,
we've got all the values needed
substitute then in (i)
( A+ B+ C){A^2 + B^2 + C^2 - ( AB + BC + CA)}
= (4) {4 -(6)}
= 4 (-2)
= -8
so,
A^3+B^3 +C^3-3ABC = -8
AB + BC+CA = 6
A^3 + B^3 +C^3 - 3ABC
as we know that
A^3 + B^3 + C^3 -3ABC = ( A+ B+ C){A^2 + B^2 + C^2 - ( AB + BC + CA)} -------(i)
let's find the value of A^2 + B^2 + C^2 first , using the identity (a + b+ c)^2
(A+B + C)^2 = {A^2 + B^2 + C^2 + 2 ( AB + BC + CA)}
substitute the given values,
(4)^2 = A^2 + B^2 + C^2 + 2 (6)
16 -12 = A^2 + B^2 + C^2
A^2 + B^2 + C^2 = 4
now,
we've got all the values needed
substitute then in (i)
( A+ B+ C){A^2 + B^2 + C^2 - ( AB + BC + CA)}
= (4) {4 -(6)}
= 4 (-2)
= -8
so,
A^3+B^3 +C^3-3ABC = -8
Similar questions