if a+b+c=4 and (a+b+c) whole square = 14, then what is ab+bc+ca
Answers
Answered by
1
i think the problem is like this
a+b+c=4----(1)
a^2+b^2+c^2=14-------(2)
a^2+b^2+c^2+2(ab+bc+ca)=(a+b+c)^2
14+2(ab+bc+ca)=4^2
2(ab+bc+ca)=16-14
ab+bc+ca=2/2
ab+bc+ca=1
a+b+c=4----(1)
a^2+b^2+c^2=14-------(2)
a^2+b^2+c^2+2(ab+bc+ca)=(a+b+c)^2
14+2(ab+bc+ca)=4^2
2(ab+bc+ca)=16-14
ab+bc+ca=2/2
ab+bc+ca=1
mysticd:
thank you
Answered by
3
given that a+b+c = 4
(a+b+c)² =14
a^2+b^2+c^2+2(ab+bc+ca)=(a+b+c)^2
14+2(ab+bc+ca)=4^2
2(ab+bc+ca)=16-14
ab+bc+ca=2/2
ab+bc+ca=1
(a+b+c)² =14
a^2+b^2+c^2+2(ab+bc+ca)=(a+b+c)^2
14+2(ab+bc+ca)=4^2
2(ab+bc+ca)=16-14
ab+bc+ca=2/2
ab+bc+ca=1
Similar questions