If a + b + c = 4 and a² + b² + c² = 16, find the value of a³ + b³ + c³- 3abc.
Answers
Answer: 112
STEP BY STEP
Given =>
a + b + c = 16
a² + b² + c² = 90
To find =>
a³ + b³ + c³ - 3abc
We know,
a³ + b³ + c³ - 3abc = (a + b + c) [a² + b² + c² - (ab + bc + ca)]
But, we have to find out a³ + b³ + c³ - 3abc and in above formula we know the value of a + b + c and a² + b² + c² but, not the value of ab + bc + ca
So, let's find out value of - ab - bc - ca by this,
(a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca
Now, let's put the values,
(16)² = 90 + 2(ab + bc + ca)
256 = 90 + 2(ab + bc + ca)
256 - 90 = 2(ab + bc + ca)
166 = 2(ab + bc + ca)
ab + bc + ca = 166/2
ab + bc + ca = 83
Now, we know all required values to find out a³ + b³ + c³ - 3abc let's put them in formula
a³ + b³ + c³ - 3abc = (16) [90 - (83)]
a³ + b³ + c³ - 3abc = 16 * 7
a³ + b³ + c³ - 3abc = 112
The value of a³ + b³ + c³ - 3abc is 112.
HOPE IT'S USEFUL
PLEASE MARK ME AS A BRAINLIEST PLS