If a+b+c=5 a^2+b^2+c^2=29 find the value of a^3+b^3+c^3-3abc
Answers
Answered by
0
a=5-b-c
a2=(5-b-c)2
(5-b-c)2
a2=(5-b-c)2
(5-b-c)2
Answered by
1
Answer:
155
Step-by-step explanation:
A+b+c= 5 and a 2 + b 2 +c 2 =29, find the value of a 3 +b 3 +c 3 -3abc
Consider the formula - a³+b³+c³- 3abc = (a+b+c) (a²+b²+c²-(ab+bc+ca))
We have to find ab+bc+ca
given a+b+c = 5
Squaring on both sides we get,
(a+b+c)² = 5²
a²+b²+c² + 2(ab+bc+ca) = 25
2 (ab+bc+ca) = -4
ab + bc + ca = -2
Now, a³+b³+c³-3abc = (a+b+c) (a²+b²+c²-(ab+bc+ca))
Putting the values we get
5(29-(-2))
5 x 31
155
Similar questions