If a+b+c=5, a² +b² +c² =27,
a ^3+ b^3 + c^3 = 125 then 4abc?
Answers
Answered by
3
(a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ca)
5^2 = 27 + 2(ab + bc + ca)
25 = 27 + 2( ab + bc + ca)
2(ab + bc + ca ) = 25 - 27 = -2
ab + bc + ca = -1
now
a^3 + b^3 + c^3 - 3abc = (a + b + c) (a^2 + b^2 + c^2 - ab - bc - ca)
125 - 3abc = 5 (27 - (-1))
125 - 3abc = 5 (27 + 1)
125 - 3abc = 5*28
125 - 3abc = 140
-3abc = 140 - 125 = 15
abc = 15/-3 = -5
now,
4abc = 4*(-5) = -20
Similar questions