If a + b + c = 5, a2 + b2 + c2 = 27, and a3 + b3 + c3 = 125, then the value of 4abc is:
Answers
Step-by-step explanation:
Given If a + b + c = 5, a2 + b2 + c2 = 27, and a3 + b3 + c3 = 125, then the value of 4abc is
- We know that a^3 + b^3 + c^3 – 3abc = (a + b + c)(a^2 + b^2 + c^2 – ab – bc – ca)
- (a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca
- 5^2 = 27 + 2(ab + bc + ca)
- 25 – 27 = 2(ab + bc + ca)
- -2 / 2 = ab + bc + ca
- So ab + bc + ca = - 1-----------1
- Now a^3 + b^3 + c^3 – 3abc = (a + b + c)(a^2 + b^2 + c^2 – ab – bc – ca)
- 125 – 3abc = 5(27 – (- 1)
- 125 – 3abc = 5(28)
- 125 – 3abc = 140
- 125 – 140 = 3abc
- So 3abc = - 15
- Or abc = - 5
- Multiplying by 4 we get
4abc = - 20
Reference link will be
https://brainly.in/question/4855440
# Answer with quality
# BAL
4abc = -20
Step-by-step explanation:
Given data
a+b+c = 5
a²+ b² + c² = 27
a³ + b³ + C³ = 125
To find - 4 abc
(a+b+c)² = a² + b² + c² + 2ab + 2bc +2ca ------------> 1
Substitute the values of (a+b+c) and a²+b²+c² in the equation 1
(5)² = 27 + 2(ab + bc+ ca)
25 = 27 + 2(ab + bc+ ca)
-2 = 2(ab + bc+ ca)
Eliminate 2 on both sides of the equation
(ab + bc+ ca) = -1 -------------->2
(a³ + b³ +c³) = (a+b+c)(a² + b² +c² -ab -bc-ca) ------------>3
Substitute a+b+c = 5, a²+ b² + c² = 27, a³ + b³ + C³ = 125 in the above equation
(125- 3abc) = 5 (27 - ( -1))
(125- 3abc) = 135 + 5
(125- 3abc) = 140
-3abc = 15
abc = - 5
Multiply 4 on the both sides of the above equation
4 abc = 4× (-5)
4 abc = -20
To learn more ...
1. https://brainly.in/question/4855440
2. https://brainly.in/question/3864104