If a+b+c = 5, ab+bc+ac = 10 find a2+b2+c2
Answers
Answered by
1
a + b + c = 5
Square on both sides,
(a + b + c)² = 5²
==================
By formula,
(a+b+c)²=a²+b²+c²+2(ab+bc+ca)
==================
a² + b² + c² +2(ab + bc +ca) = 25
a² + b² + c² +2(10) =25
a² + b² + c² =25-20=5
I hope this will help you
-by ABHAY
Square on both sides,
(a + b + c)² = 5²
==================
By formula,
(a+b+c)²=a²+b²+c²+2(ab+bc+ca)
==================
a² + b² + c² +2(ab + bc +ca) = 25
a² + b² + c² +2(10) =25
a² + b² + c² =25-20=5
I hope this will help you
-by ABHAY
Answered by
0
(a+b+c)^2=25
a^2+b^2+c^2+2(ab+bc+ca)=25
a^2+b^2+c^2+20=25
a^2+b^2+c^2=5
a^2+b^2+c^2+2(ab+bc+ca)=25
a^2+b^2+c^2+20=25
a^2+b^2+c^2=5
Similar questions