If a+b+c=5; ab+bc+ac=15 then (a+b)^3+(b+c)^3+(a+c)^3-3(a+b)(b+c)(c+a)
Answers
Answered by
3
(a + b)3 + (b +c)3 + (c + a)3 - 3(a + b)(b +c)(c + a) = 2a3 + 2b3 +2c3 - 6abc
2a3 + 2b3 + 2c3 - 6abc = 2(a3 + b3 +c3 - 3abc) = 2(a + b+ c)(a2 + b2 +c2 - (ab +bc + ca)) -------- (i)
(a + b +c)2 = a2 +b2 +c2 + 2(ab +bc + ca)
52 = a2 +b2 + c2 + 30
25 - 30 = a2 + b2 + c2
- 5 = a2 +b2 + c2
Putting the values in equation (i) we get
= 2(5)(-5 - 15)
= 2(5)(-20) = - 200
Ans: - 200
Therefore you can conclude to this point that it must be a property that
2a3 + 2b3 + 2c3 - 6abc = 2(a3 + b3 +c3 - 3abc) = 2(a + b+ c)(a2 + b2 +c2 - ab - bc - ca)
pls mark it as the brainliest
Answered by
0
Answer:1234
Step-by-step explanation:
Similar questions
Math,
5 months ago
Science,
5 months ago
Math,
11 months ago
Computer Science,
11 months ago
Physics,
1 year ago