Math, asked by ajaykrsingh52, 1 year ago

If a+b+c=5;ab+bc+ca=10 find a^3+b^3+c^3-3abc

Answers

Answered by kharshit801
3

By property

                      (a+b+c)^2=(a^2+b^2+c^2)+2(ab+bc+ca)

                       

given

          a+b+c=5

         ab+bc+ca=10


putting value

(5)^2=(a^2+b^2+c^2)+2(10)

25-20=(a^2+b^2+c^2)

5=(a^2+b^2+c^2)


now by this property

 a^3 + b^3 + c^3 - 3abc= (a+b+c)(a^2+b^2+c^2-ab-bc-ca)

                                     = (5)(5-(10)

                                  = -25


Answered by sharmasatbir7893
0

Answer:

By property

(a+b+c)^2=(a^2+b^2+c^2)+2(ab+BC+ca)

Given

a+b+c=5

ab+bc+ac=10

Putting value

(5)^2=(a^2+b^2+c^2)+2(10)

25-20=a^2+b^2+c^2

a^2+b^2+c^2=5

Now,by this property:-

a^3+b^3+c^3-3abc=(a+b+c)

(a^2+b^2+c^2-ab-bc-ac)

=(5)(5-(10))

=-25

Similar questions