If a+b+c = 5, ab+bc+ca = 10, then prove that a^3+b^3+c^3 -3abc = -25
Answers
Answered by
0
Answer:
Proved below
Step-by-step explanation:
a+b+c = 5
(a+b+c)^2 = 5^2=25
a^2+b^2+c^2 +2(ab+bc+ca)=25
a^2+b^2+c^2 + 2x10 = 25
a^2+b^2+c^2 = 25-20
a^2+b^2+c^2 = 5 -------eqn (1)
We know that
a^3+b^3+c^3 -3abc =(a+b+c)(a^2+b^2+c^2 - ab - bc -ca)
= (5){a^2+b^2+c^2 - (ab+bc+ca)}
= (5)(5 - 10) -------- from eqn (1)
= 5 (-5) = -25
Therefore a^3+b^3+c^3 -3abc = -25
Similar questions