if a+b+c=5, ab+bc+ca=3 find the value of a³+b³+c³-3abc
Answers
Answered by
2
❍ GIVEN:
a+b+c = 5
ab+bc+ca = 3
➢ TO FIND: value of a³+b³+c³-3abc
✯ SOLUTION:
❍ We know that:
a³+b³+c³-3abc =(a+b+c)(a²+c²+c²-ab-bc-ca) ...(i)
then, first we want a²+b²+c²
so,
⟹ (a+b+c)²= a²+b²+c²+2(ab+bc+ca)
⟹ (5)² = a²+b²+c²+2(3)
⟹ 25 = a²+b²+c²+6
∴ a²+b²+c² = 19
now we want:
➢ (-ab-bc-ca)
⟹ given:
⟹ (ab+bc+ca) = 3
⟹ -3 = - (ab+bc+ca)
∴ (-ab-bc-ca) = -3
➢ Now, we will find a³+b³+c³-3abc
by using the indentity ....(i)
⟹ a³+b³+c³-3abc = (5) (19- (-3))
⟹ a³+b³+c³-3abc= 5× 22
∴ a³+b³+c³-3abc = 110
Similar questions