If a+b-c=5 and a2+b2+c2=29,find the value of ab-bc-ca
Answers
Answer:
Value of ( ab - bc - ca ) = -2
Given:
➛a + b - c = 5
➛a² + b² + c² = 29
To Find:
Value of : ab - bc - ca
Solution:
We are given,
➛a + b - c = 5
➛a² + b² + c² = 29
a + b - c = 5
Squaring on both sides,
We get,
( a + b - c )² = 5²
We know,
( a + b - c )² = a² + b² + c² + 2ab - 2bc - 2ac
➪a² + b² + c² + 2ab - 2bc - 2ac = 25
➪( a² + b² + c² ) + 2ab - 2bc - 2ac = 25
but
➪a² + b² + c² = 29 . ( given )
➪29 + 2 ( ab - bc - ac ) = 25
➪2 ( ab - bc - ac ) = 25 - 29
➪2 ( ab - bc - ac ) = -4
➪ab - bc - ac = -4 /2
➪ab - bc - ac = -4 /2 = -2
⛬ab - bc - ca = -2
____________________________________
Alternative method:
We are given,
➾a + b - c = 5
but , we know
( a + b - c )² = a² + b² + c² + 2ab - 2bc - 2ac
putting given values in given equation,
we get
➪ ( 5 )² = ( a² + b² + c² ) + 2( ab - bc - ac )
➪ 25 = 29 + 2( ab - bc - ac ).
........................... a² + b² + c² = 29 ( given )
➪ 25 - 29 = 2( ab - bc - ac )
➪ -4 = 2( ab - bc - ac )
➪ -4 /2 = ab - bc - ac
⛬ -2 = ab - bc - ac
or
ab - bc - ca = -2