If a+b+c = 5 and ab + bc + c = 10 , prove that a³ + b³ + c³ - 3abc = -25
Answers
Answered by
1
Hey
Here is ur answer
Hope it helps you
Here is ur answer
Hope it helps you
Attachments:
Answered by
7
a+b+c = 5 and ab + bc + c = 10 , prove that a³ + b³ + c³ - 3abc = -25
(a+b+c)² = a² + b² + c² + 2ab + 2bc + 2ca
(5)² = a² + b² + c² + 2(10)
25 = a² + b² + c² + 20
25 - 20 = a² + b² + c²
5 = a² + b² + c²
a³ + b³ + c³ - 3abc = (a+b+c) [a² + b² + c² - (ab+bc+ca)]
a³ + b³ + c³ - 3abc = (5) (5 - 10)
a³ + b³ + c³ - 3abc = 5 x (-5)
a³ + b³ + c³ - 3abc = -25
Hence proved!
(a+b+c)² = a² + b² + c² + 2ab + 2bc + 2ca
(5)² = a² + b² + c² + 2(10)
25 = a² + b² + c² + 20
25 - 20 = a² + b² + c²
5 = a² + b² + c²
a³ + b³ + c³ - 3abc = (a+b+c) [a² + b² + c² - (ab+bc+ca)]
a³ + b³ + c³ - 3abc = (5) (5 - 10)
a³ + b³ + c³ - 3abc = 5 x (-5)
a³ + b³ + c³ - 3abc = -25
Hence proved!
Similar questions