if a+b+c = 5 and ab+bc+ca = 10
proove a³+b³+c³-3abc = -25
Answers
Answer:
a³ + b³ + c³ - 3abc = -25
Step-by-step explanation:
Given, a + b + c = 5
On squaring both sides
(a + b + c)² = 5²
a² + b² + c² + 2(ab + bc + ca) = 25
a² + b² + c² + 2×10 = 25
a² + b² + c² = 25 - 20 = 5
We know that, a³ + b³ + c³ - 3abc = (a + b + c)(a² + b² + c² - ab - bc - ca)
= 5× (5 - 10)
= 5×(-5) = -25
We are given :-
a + b + c = 5 and ab + bc + ca = 10
Since, (a + b + c)² = a² + b² + c² + 2(ab + bc + ca)
=> 5² = a² + b² + c² + 2(10)
=> a² + b² + c² = 5
Now, we know that,
a³ + b³ + c³ - 3abc = (a + b + c)[a² + b² + c² - (ab + bc + ca)]
=> a³ + b³ + c³ - 3abc = (5)[5 - 10] = -25
Q.E.D.
Hope it'll help you.....