if a+b+c = 5 and ab+bc+CA =10
then prove that a^3+b^3+ c^3 = -25
Answers
Step-by-step explanation:
we have
(a^3+b^3-3abc) =
(a+b+c) (a^2+b^2+c^2-ab-bc-ca)
= (a+b+c) [(a+b+c) ^2 - 3(ab+bc+ca)]
= 5×[(15)^2 - (3× 10)]
= 5 × (25-30) = 5× (-5)
= -25
Hence, (a^3+b^3+c^3 - 3abc) = -25
hope it helps you❤❤
pls make it brainlist answer❤❤✌✌
Correct Question:-
If a + b + c = 5 and ab + bc + ca = 10 then prove that a³ + b³ + c³ - 3abc = - 25 ?
Answer:-
Given:
a + b + c = 5 -- equation (1)
ab + bc + ca = 10 -- equation (2).
We know that,
a³ + b³ + c³ - 3abc = ( a² + b² + c² - ab - bc - ca )( a + b + c )
Substitute the value of eq - (1) here,
→ a³ + b³ + c³ - 3abc = ( a² + b² + c² - ( ab + bc + ca )(5)
Again substitute eq - (2) .
→ a³ + b³ + c³ - 3abc = ( 5 ) ( a² + b² + c² - ( 10 ) -- equation (3)
We know that,
a² + b² + c² = ( a + b + c )² - 2( ab + bc + ca ).
→ a² + b² + c² = (5)² - 2(10)
→ a² + b² + c² = 25 - 20 = 5
Substitute (a² + b² + c² = 5) in equation (3).
→ a³ + b³ + c³ = ( 5 )( 5 - 10 )
→ a³ + b³ + c³ = 5(-5)
→ a³ + b³ + c³ = - 25
Hence, Proved.