if a+b+c =5 and ab+bc+ca = 10 then prove that a^3+b^3+c^3 = -25
Answers
Answered by
1
Step-by-step explanation:
Given,
a+b+c = 5
ab+bc+ca = 10
To proof that a³+b³+c³-3abc = -25
Proof: Using idenetity;
(a+b+c)² = a²+b²+c²+2ab+2bc+2ac
=> (a+b+c)² = a²+b²+c²+2(ab+bc+ac) [By taking 2 as common]
Subtituting the values given in the question,
=> (5)² = a²+b²+c²+2(10)
=> 25 = a²+b²+c²+20
=> 25-20 = a²+b²+c²
=> 5 = a²+b²+c²
So, we get a²+b²+c² = 5
Now, take the identity,
a³+b³+c³-3abc = (a+b+c)(a²+b²c²-ab-bc-ca)
=> a³+b³+c³-3abc = (a+b+c){a²+b²+c²-(ab-bc-ca)}
=> a³+b³+c³-3abc = (5){5-(10)}
=> a³+b³+c³-3abc = (5)(-5)
=> a³+b³+c³-3abc = -25
Hence, proved.
Similar questions