if a+b+c = 5 and ab+bc+ca =10,then prove that a^3 + b^3 + c^3 - 3abc = -25
Answers
Answered by
5
- ➝ a + b + c = 5
- ➝ ab + bc + ca = 10
- ✦ a³ + b³ + c³- 3abc = -25
➝ a + b + c = 5
➝ ab + bc + ca = 10
we know that:-
➝ (a +b+c)²= a²+ b² +c²+2ab+ 2ba+2ca
➝ (a + b + c)²= a² + b² + c² + 2(ab+ ba+ca)
➝ (5)² = a² + b² + c² + 2× 10
➝ 25 = a² + b² + c² + 20
➝ a² + b² + c² = 5
We know that :-
a³+b³+c³-3abc=(a +b+c)[a²+b²+c²-ab-bc-ca]
➝a³+b³+c³-3abc=(a+b+c[a²+b²+c²-(ab+bc+ca)]
➝ a³ + b³ + c³- 3abc = 5 [5 -(10)]
➝ a³ + b³ + c³- 3abc = 5[-5]
➝ a³ + b³ + c³- 3abc = -25
hence Proved That :-
➝ a³ + b³ + c³- 3abc = -25
━━━━━━━━━━━━━━━━━━━━━━━━━
Similar questions