if a + b +c = 5 and ab+bc+ca= 10, then prove that a^3+b^3+c^3− abc3= −25
Answers
Answered by
3
Given:
a + b + c = 5
ab + bc + ac = 10
To Prove:
a³ + b³ + c³ - 3abc = -25
Method of Solution:
1. We can solve it by just using a formula,
a³ + b³ + c³ - 3ab
= (a+b+c)(a²+ b² + c²- ab - bc - ac)
2. But 1st we should find the value of a²+ b² + c².
So, Square both side get the required value.
3. Substitute the values and prove.
Solution:
(a + b +c)² = a² + b² + c² + 2(ab + bc + ac)
or, 5² = a² + b² + c² + 2(10)
or, 25 = a² + b² + c² + 20
or, 25 - 20 = a² + b² + c²
or, 5 = a² + b² + c²
Now, We know the value of a² + b² + c²,
Again,
a³ + b³ + c³ - 3ab
= (a+b+c)(a²+ b² + c²- ab - bc - ac)
=(5){5 -(ab +bc +ac)}
= 5(5-10)
= 5(-5)
= -25
Hence, a³ + b³ + c³ - 3abc = -25 [Proved]
Similar questions
Math,
5 months ago
Math,
5 months ago
English,
5 months ago
Geography,
10 months ago
Chemistry,
10 months ago
Social Sciences,
1 year ago
Social Sciences,
1 year ago