If a + b + c = 5 and ab + bc + ca = 10, then prove that a3 + b3 + c3 - 3abc = -25.
Answers
Answered by
12
Given:
a+b+c = 5
ab +bc +ca = 10
To prove:
a³ + b³ + c³ -3abc = -25
Solution:
We know that,
(a+b+c)² = a² +b² +c² +2(ab+bc+ca)
Now we will put the given values
=> (5)² = a² +b² +c² +2(10)
=> 25 = a² +b² +c² +20
=> a² +b² +c² = 25-20
=> a² +b² +c² = 5
We also know that
a³+b³+c³-3abc = (a+b+c)(a²+b²+c²-ab-bc-ca)
=> a³+b³+c³-3abc = (a+b+c)[a²+b²+c²-(ab+bc+ca)]
Again substituting values
=> a³+b³+c³-3abc = (5) [ 5-(10) ]
=> a³+b³+c³-3abc = 5× (5-10)
=> a³+b³+c³-3abc = 5×(-5)
=> a³+b³+c³-3abc = -25
Hence proved
Hope it helps you
Mark as brainliest
Similar questions