If a+b+c=5 and ab +bc+ca=10,then prove that a3 +b3 +c3 -3abc= -25
Answers
Answered by
2
✪AnSwEr
- a+b+c=5 and
- ab+bc+ac=10
- a³+b³+c³-3abc=-25
- we know that
(a+b+c)²=a²+b²+c²+2(ab+bc+ac)
- a+b+c=5 (both sid squareing)
=>(a+b+c)²=5²
=>a²+b²+c²+2(ab+bc+ac)=25
=>a²+b²+c²+2(10)=25
=>a²+b²+c²+20=25
=>a²+b²+c²=5
Factorize a3 +b3 +c3 -3abc
=>a3 +b3 +c3 -3abc= (a+b+c) (a²+b²+c²-ab-bc-ac)
=>a3 +b3 +c3 -3abc=(5)(5-10)
=>a3 +b3 +c3 -3abc=-25
Hence proved
Similar questions