Math, asked by aaastha14, 8 months ago

If a+b+c=5 and ab+bc+ca=10 then prove that a3+b3+c3-3abc= (a+b+c)(a2+b2+c2-ab-bc-ca)

Answers

Answered by rowboatontario
1

a^{3} +b^{3}+c^{3}-3abc = (a+b+c)(a^{2}+b^{2}+c^{2}-ab-bc-ca).

Step-by-step explanation:

We are given that a + b + c = 5 and ab + bc + ca = 10.

And we have to prove that: a^{3} +b^{3}+c^{3}-3abc = (a+b+c)(a^{2}+b^{2}+c^{2}-ab-bc-ca)

AS we know that;

(a+b+c)^{2} =a^{2} +b^{2} +c^{2} +2ab+2bc+2ca

(a+b+c)^{2} =a^{2} +b^{2} +c^{2} +2(ab+bc+ca)

Now, putting the value of (a + b + c) and (ab + bc + ca) as given in the question;

(5)^{2} =a^{2} +b^{2} +c^{2} +2(10)

25 =a^{2} +b^{2} +c^{2} +20

a^{2} +b^{2} +c^{2} =25-20

a^{2} +b^{2} +c^{2} =5  ---------------- [Equation 1]

Now, the left-hand side of the equation is;

LHS =  a^{3} +b^{3}+c^{3}-3abc

       =  (a+b+c)(a^{2}+b^{2}+c^{2}-ab-bc-ca)   {the above equation can be  

                                                                               written as this also}                                

       =  (a+b+c)(a^{2}+b^{2}+c^{2}-(ab+bc+ca))

       =  (5)\times (5-(10))

       =  5 \times (-5)  = -25

RHS =  (a+b+c)(a^{2}+b^{2}+c^{2}-ab-bc-ca)

       =  (a+b+c)(a^{2}+b^{2}+c^{2}-(ab+bc+ca))

       =  (5)\times (5-(10))

       =  5 \times (-5)  = -25

Since LHS = RHS, so we have proved that a^{3} +b^{3}+c^{3}-3abc = (a+b+c)(a^{2}+b^{2}+c^{2}-ab-bc-ca).          

Similar questions