Math, asked by ash09954, 11 months ago

If a+b+c = 5 and ab+bc+can = 10, then prove that a^3 + b^3 + c^3 - 3xyz = -25

Answers

Answered by vaishnavitiwari1041
6

Answer:

Here's your answer

Given

a+b+c= 5

ab +bc+ca =10

By using the identity.....

 {a}^{3}  +  {b}^{3}  +  {c}^{3} - 3abc = (a + b + c) \\  ( {a}^{2}  +  {b}^{2}  +  {c}^{2}  - ab - bc - ca) \\  \\  - 25 = (5)( {a}^{2}  +  {b}^{2}  +  {c}^{2}  - (10)) \\  \\  - 25 = 5( {a}^{2}  +  {b}^{2}  +  {c}^{2}  - 10) \\  \\  - 25 = 5 {a}^{2}  + 5 {b}^{2}  + 5 {c}^{2}  - 50 \\    - 25 + 50 = 5( {a}^{2}  +  {b}^{2}  +  {c}^{2}) \\  \\

25 = 5( {a}^{2}  +  {b}^{2}  +  {c}^{2} ) \\  \\ 5 =  {a}^{2}  +  {b}^{2}  +  {c}^{2}

by using this value u can also prove the question......

Hope it helps ...

Similar questions