Math, asked by parvstark, 9 months ago

if a+b+c=5 and ab+bc+can=15, find the value of (a+b)^3+(b+c)^3+(c+a)^3-3(a+b)(b+c)(c+a)​

Answers

Answered by Mora22
0

Answer:

(a+b)^3+(b+c)^3+(c+a)^3-3(a+b)(b+c)(c+a)=2 {a}^{3}  + 2 {b}^{3} +  2 {c}^{3}    - 6abc

 = 2( {a}^{3} + {b}^{3}  +  {c}^{3}  - 3abc )

 = 2(a + b + c)( {a}^{2}  +  {b}^{2}  +  {c}^{2}  - ab - bc - ca)...equation \: 1

{(a + b + c)}^{2}  =  {a}^{2} +  {b}^{2}   +  {c}^{2}  + 2(ab + bc + ca)

25 =  {a}^{2}  +  {b}^{2}  +  {c}^{2}  + 30

{a}^{2}  +  {b}^{2}  +  {c}^{2} =  - 5

put \: values \: in \: equation \: 1 \: we \: get \:  \\

(a+b)^3+(b+c)^3+(c+a)^3-3(a+b)(b+c)(c+a) =  \\

2(a + b + c)( {a}^{2}  +  {b}^{2}  +  {c}^{2}  - ab - bc - ca) =  \\ 2(5)( - 5 - 15) =  - 200

Similar questions