if a+b+c=6,a^2+b^2+c^2=34,then ab+bc+ca
Answers
Answered by
18
GIVEN :-
- a + b + c = 6.
- a² + b² + c² = 34.
TO FIND :-
- ab + bc + ca.
SOLUTION :-
As we know that ,
➔ (a + b + c)² = a² + b² + c² + 2(ab + bc + ca)
Substitute all the values,
➔ (6)² = 34 + 2(ab + bc + ca)
6² = 6 × 6 = 36,
➔ 36 = 34 + 2(ab + bc + ca).
Transpose 34 to L.H.S,
➔ 36 - 34 = 2(ab + bc + ca)
➔ 2 = 2(ab + bc + ca)
Transpose 2 to L.H.S ,
➔ 2/2 = ab + bc + ca
➔ ab + bc + ca = 1.
❑ Hence the required answer is 1.
ADDITIONAL INFORMATION :-
➳ ( x + y )² = x² + 2xy + y²
➳ ( x - y )² = x² - 2xy + y²
➳ ( x - y ) ( x -y ) = ( x - y )²
➳ ( x + y ) ( x + y ) = ( x + y )²
➳ x² - y² = ( x + y ) ( x - y )
Answered by
0
Answer:
1
Step-by-step explanation:
a+b+c=6
a^2+b^2+c^2=34
36(6^2) =34+2(ab+bc+ca)
36-34=2(ab+bc+ca)
2=2(ab+bc+ca)
a=ab
a=aba÷a=b
2÷2=ab+bc+ca
1=ab+bc+ca
Similar questions
English,
3 months ago
Hindi,
3 months ago
CBSE BOARD XII,
8 months ago
Social Sciences,
8 months ago
Math,
11 months ago